

Content

Description	Page
Overview	40
Technical Data	43
Dimensions	48
Order Instructions	50

Belt actuator with Internal Plain Bearing Guide for Point-to-Point Applications

A completely new generation of actuators which can be integrated into any machine layout neatly and simply.

Advantages

- Precise Path and Position Control
- High Speed Operation
- Easy Installation
- Low Maintenance
- Ideal for Precise Point-to-Point Applications

Features

- Integrated Drive and Guidance System
- Tandem Configuration with Increased Carrier Distance for Higher Moment Supports
- Long Available Strokes
- Complete Motor and Control Packages
- Diverse Range of Accessories and Mountings
- Bi-Parting and Special Options Available

Threaded Holes for
Motor Mounting
(on two sides)

Tandem configuration with increased carrier distance for higher moment supports. Bi-parting version for precise synchronized movements

The dovetailed mounting rails of the new actuator expand its function into that of a universal system carrier.
Modular system components are simply clamped on.

OSP-E..B Belt Actuator with internal Plain Bearing Guide

STANDARD VERSIONS

OSP-E..B

Carrier with internal guidance and magnet packet for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

Drive Shaft Versions

- Plain shaft or
- Double plain shaft (Option) e.g. to drive two actuators in parallel.

Standard

Standard

Option

OPTIONS

Tandem
For higher moment support.

Bi-parting

For perfectly synchronised bi-parting movements.

Accessories

Motor Mounting

End Cap Mounting

For end-mounting of the actuator.

Profile Mounting

For supporting long actuators or mounting the actuator on the dovetail grooves.

Clevis Mounting

Carrier with tolerance and parallelism compensation to drive external linear guides.

Inversion Mounting

The inversion mounting, mounted on the carrier, transfers the driving force to the opposite side, e.g. for dirty environments.

Magnetic Sensors Series RST and EST

For contactless position sensing of end stop and intermediate carrier positions.

Standard Version

- Standard carrier with internal plain bearing guide
- Dovetail profile for Mounting of Accessories and the Actuator itself
- Position of Drive Shafts

Options

- Tandem-Version
- Bi-parting Version for Synchronised Movements
- Drive shaft with double plain shaft

Characteristics

	Symbol	Unit
General Features	Description	
Series		
Name	OSP-E..BHD	
Mounting	$\vartheta_{\min }$	Belt Actuator with Internal Plain Bearing Guide
Temperature Range	$\vartheta_{\max }$	${ }^{\circ} \mathrm{C}$

Weight (mass) and Inertia

Series	Weight (mass) [kg]			Inertia [$\times 10^{\mathbf{- 6}} \mathrm{kgm}^{\mathbf{2}}$]	
	at stroke 0 m	ad per metre stroke	moving mass	at stroke 0 m	ad per metre stroke
OSP-E25B	0.9	1.6	0.2	25	6.6
OSP-E32B	1.9	3.2	0.4	43	10
OSP-E50B	5.2	6.2	1.0	312	45
OSP-E25B*	1.2	1.6	0.5	48	6.6
OSP-E32B*	2.3	3.2	0.8	83	10
OSP-E50B*	6.3	6.2	2.1	585	45

*Version: Tandem and Bi-parting (Option)

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator. See if profile mountings are needed using the maximum allowable unsupported length graph on page 45.
At least one end cap must be secured to prevent axial sliding when profile mounting is used. When the actuator is moving an externally guided load, the compensation must be used.
The actuators can be fitted with the standard carrier mounting facing in any direction. To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side.

Maintenance

All moving parts are long-term lubricated for a normal operational environment. Parker recommends a check and lubrication of the actuator, and if necessary a change of the belt and wear parts, after an operation time of 12 months of operation or 3000 km travel of distance.
Additional greasing is easily done by using nipples in the slotted profile. Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

Sizing of Actuator

The following steps are recommended for selection:

1. Required acceleration see table
2. Required torque is shown on page 46 and 47.
3.Check that maximum values in the table 3 are not exceeded .
3. Drive shaft by using table T2. (Pay attention to note under table) If value is lower than required, overview the moving profile or select if possible a bigger unit.
4. Before sizing and specifying the motor, the average torque must be calculated using the cycle time of the application.
5. Check that the maximum allowable unsupported length is not exceeded (see on page 45).

Performance Overview

(T1)

Characteristics		Unit		Description	
Size			OSP-E 25B	OSP-E 32B	OSP-E 50B
Max. Speed		[m/s]	2	3	5
Linear Motion per Revolution, Drive	Shaft	[mm]	60	60	100
Max. rpm Drive Shaft		[min^{-1}]	2,000	3,000	3,000
Max. Effective Action Force F_{A} at Speed	$<1 \mathrm{~m} / \mathrm{s}$	[N$]$	50	150	425
	1-2 m/s	[N]	50	120	375
	$>2 \mathrm{~m} / \mathrm{s}$	[N]	-	100	300
No-load Torque		[Nm]	0.4	0.5	0.6
Max. Acceleration/Deceleration		[$\mathrm{m} / \mathrm{s}^{2}$]	10	10	10
Repeatability		[mm/m]	± 0.05	± 0.05	± 0.05
Max. Stroke Length OSP-E..B		[mm]	3,000	5,000	5,000
Max. Stroke Length OSP-E.. ${ }^{*}$		[mm]	$2 \times 1,500$	$2 \times 2,500$	$2 \times 2,500$

*Bi-parting version
Maximum Permissible Torque on Drive Shaft Speed/Stroke

OSP-E-25B				OSP-E-32B				OSP-E-32B			
Speed $[\mathrm{m} / \mathrm{s}]$	Torque $[\mathrm{Nm}]$	Stroke $[\mathrm{m}]$	Torque $[\mathrm{Nm}]$	Speed $[\mathrm{m} / \mathrm{s}]$	Torque $[\mathrm{Nm}]$	Stroke $[\mathrm{m}]$	Traque $[\mathrm{Nm}]$	Speed $[\mathrm{m} / \mathrm{s}]$	Torque $[\mathrm{Nm}]$	Stroke $[\mathrm{m}]$	Traque $[\mathrm{Nm}]$
1	0.9	1	0.9	1	2.3	1	2.3	1	10.0	1	10.0
2	0.9	2	0.9	2	2.0	2	2.3	2	9.5	2	10.0
		3	0.9	3	1.8	3	2.3	3	9.0	3	9.0
						4	2.3	4	8.0	4	7.0
						5	1.8	5	7.5	5	6.0

Important: The maximum permissible torque on the drive shaft is the lowest value of the speed- or stroke-dependent torque value.

Example above: OSP-E32B stroke 2 m , required speed $3 \mathrm{~m} / \mathrm{s}$; From table T2: speed $3 \mathrm{~m} / \mathrm{s}$ gives 1.8 Nm and stroke 2 m gives 2.3 Nm . Max. torque for this application is 1.8 Nm .

Maximum Permissible Loads

Max. applied
Max. moments [Nm]

	load $\mathrm{F}_{\mathrm{z}}[\mathrm{N}]$	M_{x}	M_{y}	M_{z}
OSP-E25B	160	2	12	8
OSP-E32B	300	8	25	16
OSP-E50B	850	16	80	32
OSP-E..B Bi-partional	The maximum load F must be equally distributed among the two carriers.			

Combined Loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.
The maximum permissible loads must not be exceeded.

Equation of Combined Loads

The total of the loads must not exceed >1 under any circumstances

Forces, Loads and Moments

The distance I (lx, ly, Iz) for calculation of moments relates to the centre axis of the actuator.

Stroke Length

The stroke lengths of the actuators are available in multiples of 1 mm up to max.
OSP-E25B: $3 \mathrm{~m} / 2 \times 1.5 \mathrm{~m}$ *
OSP-E32B: $5 \mathrm{~m} / 2 \times 2.5 \mathrm{~m}$ *
OSP-E50B: $5 \mathrm{~m} / 2 \times 2.5 \mathrm{~m}$ *

* Version: Bi-partional

Other stroke lengths are available on request.
The end of stroke must not be used as a mechanical stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft.
The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For advise, please contact your local Parker technical support department.

Maximum Permissible Unsupported Length - Placing of Profile Mounting

Series OSP-E..B
Bi-parting version

(Up to the curve in the above graph the deflection will be max. 0.2% of distance k)
$\mathrm{k}=$ Maximum permissible distance between mountings/mid-section support for a given load F.

Mounting on the Drive Shaft

Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupler or pulley, a steadying block should be used.

Pulley

Minimum allowable number of teeth Z (AT5) at maximum applied torque.

Series	Min. Z	Min Ø
OSP-E25B	24	38
OSP-E32B	24	38
OSP-E50B	36	57

Distance / Time Graph

Using the required travel distance and total time, the adjacent graphs show the required acceleration based on maximum speed.

The graphs assume that acceleration and deceleration are equal. Please note that specifying non-essential high acceleration or short cycle time will result in an oversized motor.

Max. Speed 1 m/s

Max.Speed 3 m/s

Max.Speed2m/s

Max. Speed 5 m/s

Required Torque / Mass

Using the known mass, the direction of the application and the required acceleration from the distance-time graphs, the actuator can be sized and the required torque is shown in the adjacent graphs.
Mass in graphs = Load + moving mass of the actuator (according to the weight chart on data sheet 43 ff).
Please note: When using an additional guide, please add the mass of the carriage to the total moving mass.

Size OSP-E25B, Horizontal Application

Size OSP-E32B, Horizontal Application

Torque M [Nm]

Size OSP-E50B, Horizontal Application

Size OSP-E25B, Vertical Application

Size OSP-E32B, Vertical Application

Size OSP-E50B, Vertical Application

OSP-E Belt Actuator with Internal Plain Bearing Guide

OSP-E.. B - Basic Unit

* Note: The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm . Order stroke $=$ required travel $+2 \times$ safety distance .
The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local Parker representative.

Option-Tandem

** \quad Order stroke $=$ required travel $+\mathrm{KM} \min +2 \times$ safety distance

Option-Bi-parting

*** Order stroke $=2 \times$ required travel +KM min $+2 \times$ safety distance

Standard Carrier

Dimension Table [mm]

Series	A	B	C	E	$\mathbf{G x} \mathbf{H}$		J	K	M	S	v	X	Y	CF
OSP-E25B	125	22	41	27		$\times 10$	117	21.5	31	33	25	65	M5	52.5
OSP-E32B	150	25	52	36		$\times 12$	152	28.5	38	36	27	90	M6	66.5
OSP-E50B	200	25	87	70		$\times 12$	200	43.0	49	36	27	110	M6	92.5
Series	FB	FH	KB	KC	KE	KF	KG	KH	KJ	KL	KM ${ }_{\text {min }}$	KM ${ }_{\text {recc }}$.	KP $\times \mathbf{H}$	ZZ
OSP-E25B	40	39.5	$10_{j 6}$	15	22.0	37.0	57	30	$19^{\text {H7 }}$	24	130	190	$\mathrm{M} 5 \times 10$	8
OSP-E32B	52	51.7	$10_{j 6}$	18	17.5	36.5	61	38	$26^{\text {H7 }}$	26	170	230	M6 x 12	10
OSP-E50B	76	77.0	$16_{\text {h8 }}$	32	23.5	48.5	85	50	$40^{\text {H7 }}$	34	220	320	M8 $\times 16$	10

Carriage	
$\mathbf{0}$	Standard
$\mathbf{1}^{*}$	Tandem
$\mathbf{2}^{*}$	Bi-parting

Drive Shaft / Motor Mounting Position

Gear Mounting*				
Size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{5 0}$	
$\mathbf{0}$	without	x	x	x
$\mathbf{1}$	LP050 $\mathrm{i}=5$	x	x	
$\mathbf{2}$	LP050 $\mathrm{i}=10$	x	x	
$\mathbf{3}$	LP070 $\mathrm{i}=3$		x	x
$\mathbf{4}$	LP070 $\mathrm{i}=5$		x	x
$\mathbf{5}$	LP070 $\mathrm{i}=10$		x	x

Info: For gears the mounting kit of the motor
must be specified.
LP050: A0, A1, A2
LP070: A1, A2, A3

